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Abstract

This paper applies principal component analysis to investigate the linkages, or
dominant co-fluctuation patterns, of per capita carbon dioxide emissions across
countries for the time period 1950-2000. Energy resource world markets are
investigated as an offsetting mechanism possibly coordinating emission fluctua-
tions between countries. The results of the analysis provide evidence that world
energy resource markets are acting as a coordinating mechanism for emission
fluctuations in most cases. The results also suggest that until recently the dom-
inant emission co-fluctuation pattern for developed countries differs from the
dominant emission co-fluctuation pattern for developing countries. The com-
mon fluctuation pattern found in the 1984-2000 time period suggests that an
offsetting mechanism does exist and will help contain global per capita emis-
sions into the future. The strong degree that emissions are linked between
countries and energy markets acting as an offsetting mechanism suggest that to
be successful a global agreement to address climate change must require emis-
sion reductions by all major emitters, not just the developed countries.
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1. Introduction

There has been a significant amount of research into the statistical char-
acteristics of national per capita carbon dioxide (CO2) emissions. This topic
is important for projecting future global emissions and forecasting changes in
the distribution among countries. Many studies have focused on tests of con-
vergence of national per capita CO2 emissions (e.g., Aldy, 2006; Nguyen Van,
2005; Ordas Criado and Grether, 2011; Strazicich and List, 2003). Stationarity
at the global and/or national level has been examined by McKitrick et al., (in
press) and Romero-Avila (2008). A key question at present is the extent to
which emissions growth in one country or region affects emissions elsewhere.
McKitrick et al., (in press) find evidence that offsetting effects occur between
countries, and may constrain global per capita emissions in the future. The
purpose of this paper is to investigate more closely the extent to which national
per capita CO2 emissions are linked across countries, and whether those link-
ages can be explained based on energy markets, openness to trade, and other
factors.

This paper applies principal component analysis (PCA) to investigate the
co-fluctuation patterns of per capita carbon dioxide emissions across countries.
PCA allows for extraction of ranked orthogonal vectors from a data matrix,
where ranking is by the percentage of underlying explained variance. If all
countries’ emissions respond linearly to the same external shocks, the first prin-
cipal component (PC1) will explain a high proportion of variance in the whole
data set. If countries’ emissions are independent of each other over time, the
first principal component will explain relatively little of the underlying variance.
Hence we interpret the explained variance associated with the first principal
component as an index of homogeneity of national per capita CO2 emissions.

Our hypothesis is that energy prices transmit information across borders in
such a way as to increase coordination of emission fluctuations. This is tested
by examining the effect of energy prices on the index of homogeneity. We find
evidence in support of the hypothesis; however, the pattern of emission fluctu-
ations differs between developing and developed countries until the most recent
time period (1984-2000). We then examine the effects of openness to trade and
government intervention, and find that neither of these factors have an iden-
tifiable coordinating effect on emission fluctuations between countries. Overall
the evidence suggests that emissions are strongly linked between countries, and
we discuss what this may imply about future emission growth and global agree-
ments to address climate change.

The next section discusses the statistical characteristics of per capita CO2
emissions. Section 3.1 introduces the data, the analytical methodology, and
analyzes a global sample, a developed country sample, and a developing country
sample. Section 3.2 applies the methodology to samples of countries defined
by region. Section 3.3 investigates the importance of openness to trade and
government size. Section 4 concludes the paper.
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2. Background

There are several different motivations for examining the historical statis-
tical characteristics of national per capita carbon dioxide emissions. One is
that numerous studies projecting future climate change assume growth in per
capita CO2 emissions under assumptions that differ from what has been ob-
served historically. For example, the Special Report on Emission Scenarios
(SRES) produced by the Intergovernmental Panel on Climate Change (IPCC,
2000) includes projections of emissions using models that inherently assume
absolute convergence in per capita emissions. But convergence has not been es-
tablished in the historical data despite numerous attempts to test for it (Aldy,
2006; McKibben and Stegman, 2005; Nguyen Van, 2005; Ordas Criado and
Grether, 2011; Stegman, 2005; Strazicich and List, 2003). The studies inves-
tigating convergence in per capita CO2 emissions use empirical techniques de-
veloped in the macroeconomic literature on income convergence (such as Barro
and Sala-i-Martin, 1992; Carlino and Mills, 1993; Quah, 1996). Some of the
research discussed in this section compares statistical properties of data used
for climate change projections with those of historical data. As pointed out by
Aldy (2006), whether or not there is a historical basis for projections of per
capita emissions is very important for informing policy makers who are consid-
ering different proposals for, e.g., the distribution of emission entitlements in
any global framework addressing climate change.

Ordas Criado and Grether (2011) provide the most comprehensive analysis
out of the convergence studies. They apply non-parametric dynamic distribu-
tional analysis and find that between 1960 and 2002 national per capita CO2
emissions have actually diverged globally and predict that emissions will con-
tinue to diverge into the future. This result is certainly at odds with the SRES
scenarios. However, they do find evidence that the per capita emissions of de-
veloped countries have converged conditional on macroeconomic variables.

Another motivation for investigation of the historical statistical character-
istics of national per capita emissions is that there is a theoretical basis in
environmental economics to expect emission convergence. The environmental
Kuznets curve (EKC) hypothesis suggests that the relationship between national
income and emissions follows an inverse ‘u-shape’ (Andreoni and Levinson, 2001;
Grossman and Krueger, 1991, 1995; Lopez, 1994). The EKC hypothesis implies
that emissions will converge as incomes converge. This can be incorporated
into theoretical “green” growth models (e.g., Brock and Taylor, 2010) to pre-
dict conditional emission convergence associated with convergence in national
income. Ordas Criado and Grether (2011) find evidence of conditional conver-
gence amongst developed countries, but not when all countries are considered.

Another historical feature of interest of per capita CO2 emissions is the
trend in the global average. McKitrick et al., (in press) find that world per
capita emissions are stationary around a stable mean and have remained so
for the past three decades. They then use this result to assign probabilities
to the emission predictions of the IPCC SRES. They conclude that 33 of the
40 scenarios can be rejected, and the 7 scenarios that remain are all on the
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lower-end of emissions of the IPCC scenarios. They also find that emissions
in 95 of 121 countries were stationary2. Since the emissions of 26 countries
are found to be non-stationary while the global mean is stationary, emissions
appear to be cointegrated. McKitrick et al., (in press) suggest this may be due to
equilibrating effects of world energy markets (i.e., changes in emissions of the 26
countries systematically offset each other). If such an equilibrating mechanism
exists, it may restrict or prevent an upward trend in global per capita carbon
dioxide emissions in the future.

If integration with world energy markets leads to the cointegration of emis-
sions among countries, then energy prices should help explain co-movements
of per capita CO2 emissions between countries. If emissions are assumed to
be positively correlated with energy consumption, increased emissions in one
country should impact the world prices for energy resources positively, inducing
reduced emissions in other countries. The more highly integrated a country is
with world energy markets, the more responsive their emissions will be to pres-
sure on prices. It is also conceivable that large income effects could cause the
emissions of some countries (those with large endowments of energy resources)
to increase in response to increasing world prices. If all countries are assumed
to have similar levels of integration with energy resource world markets, then
we would expect to see systematic responses to energy price changes, including
pairwise off-setting of per capita emission fluctuations.

In the subsequent section we empirically investigate the co-fluctuation pat-
terns of per capita CO2 emissions across countries, in particular looking at
world energy prices as a coordinating mechanism for emission changes across
countries. We then add in other indicators of openness to markets to examine
the effect they play in coordinating emission variations.

3. Data, Methodology, and Analysis

3.1. Data, Methodology, and Analysis: Global, OECD, and non-OECD Samples

The analysis in this paper uses annual per capita emissions data3 over the
interval 1950 to 2000 for 132 individual countries4. The emissions data are mea-
sured in metric tonnes of carbon per capita produced from fossil fuel burning,
gas flaring, and cement manufacturing. The emissions data were obtained from
the Carbon Dioxide Information and Analysis Center (Marland et al., 2003).
Seven countries with per capita emissions greater than 15 tonnes, in any year,
were removed as outliers. Descriptive statistics for the emissions of the 132
countries used in the sample for the year 2000 are presented in Table 1. The per
capita emissions of OECD countries are, on average, 2.5 times larger than those
of non-OECD countries. The dispersion (standard deviation) of the per capita

2Some of the 95 countries had emissions that were stationary around a stable mean. And
some of the 95 countries had emissions that were trend stationary.

3See Appendix A for further information concerning all data used in this paper.
4A list of countries included can be found in Appendix B.
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emissions of developed countries is lower than that of the per capita emissions
of developing countries.

Prices for crude oil, natural gas, and coal were obtained from the Annual
Energy Review produced by the Energy Information Administration (EIA) for
the interval 1950 to 2000. The prices for crude oil are the average annual crude
oil domestic first purchase prices for the United States (nominal USD per barrel).
The natural gas prices are the average annual US natural gas wellhead prices
(nominal USD per thousand cubic feet). The coal prices are the average annual
US free-on-board prices of coal at the point of first sale (nominal USD per short
ton). These nominal prices were converted into real prices using consumer price
index (CPI) data from the US Department of Labor, Bureau of Labor Statistics.
Applying the test proposed by Kwiatkowski, et al. (1992), we fail to reject the
null hypothesis of stationarity for all three price series at the 5% significance
level. Furthermore, conducting the test proposed by Elliott, et al. (1996),
we reject the null hypothesis of a unit root in all three price series at the 1%
significance level. The test statistics for both tests are reported in Appendix B.

The methodology begins by applying principal component analysis (PCA)
to identify the dominant fluctuation patterns in the emission data. PCA has
been widely used in many fields. In economics it has been applied, for example,
in dynamic factor models for forecasting macroeconomic variables (Stock and
Watson, 2002) and for examining business cycles (Forni and Reichlin, 1998).
It has also been used to correct for cross-sectional dependence when testing
for unit roots in panel data analysis (Bai and Ng, 2004). PCA has also been
used recently to analyze fluctuation patterns of unemployment across OECD
countries (Smith and Zoega, 2007). The following presentation of PCA loosely
follows Johnson and Wichern (2007). To obtain the most dominant pattern in
the data, PCA summarizes a centered emissions data matrix C for K countries
over T periods

C =


c11 · · · · · · c1N
...

. . .
...

...
. . .

...
cT1 · · · · · · cTN


by finding a matrix z1a

T
1 of rank one, where z1 is a Tx1 vector and a1 is a Kx1

vector of scaling coefficients. This is done by minimizing the trace of the sum
of squares of the discrepancy matrix, (C − z1aT1 ) with respect to z1

min
z1

tr
(
(C − z1aT1 )T (C − z1aT1 )

)
(1)

subject to aT1 a1 = 1, (2)

where the normalization (2) is necessary to ensure a unique solution. With some
linear algebra, equation (1) can be re-written as

min
z1

tr(CTC)− 2zT1 Ca1 + zT1 z1. (3)
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The derivative of equation (3) with respect to z1 yields

−2Ca1 + 2z1 = 0,

⇒ z1 = Ca1. (4)

Equation (4) shows z1 as a function of a1. Combining equations (3) and (4)
yields

min
a1

tr(CTC)− aT1 CTCa1 (5)

subject to equation (2).

The minimization problem outlined in equation (5) is equivalent to the following
maximization problem

max
a1

aT1 C
TCa1 (6)

subject to equation (2).

The optimality condition for the maximization problem outlined in equation (6)
is

(CTC − µ1I)a1 = 0, (7)

where µ1 is the Lagrange multiplier and I is an identity matrix. From equation
(7) it is clear that µ1 is also the largest eigenvalue of CTC, and a1 is the eigen-
vector of CTC that corresponds to the largest eigenvalue. Since z1 is associated
with the largest eigenvalue, it is considered the first principal component (PC1)
of the matrix C. Furthermore, since µ1 is a scalar, equation (7) can be solved
for µ1

µ1 = aT1 C
TCa1. (8)

Substituting equation (4) into equation (8) produces µ1 as a function of z1

µ1 = zT1 z1. (9)

Equation (9) can be used to obtain the variance of z1

var(z1) =
zT1 z1
T

=
µ1

T
. (10)

Johnson and Wichern (2007) demonstrate that the variance of the matrix C is
a function of the sum of the eigenvalues of CTC

var(C) = tr(Σ) =
tr(CTC)

T
=

∑K
i=1 z

T
i zi

T
=

∑K
i=1 µi

T
, (11)
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where Σ is the covariance matrix of C. From equation (10) and equation (11)
it is possible to calculate the proportion of the variance of C that is explained
by z1

λ(C) =
var(z1)

var(C)
=

µ1∑K
i=1 µi

=
µ1

µ1 + µ2 + . . .+ µK
. (12)

PC1 (z1) explains the largest proportion of variation in the data since µ1 >
µ2 > . . . > µK .

For computational efficiency, we use the singular value decomposition method
to derive the principal components as recommended by Joliffe (1986). We also
scale the columns of C by their respective standard deviations, yielding a CTC
matrix that is a correlation matrix rather than a covariance matrix. Using PCA
based on the correlation matrix makes it easier to compare the PCA results
from two different data matrices. Using the correlation matrix is also favoured
if the columns of the data matrix highly differ in variance (which is the case
here, especially amongst the emissions data for the developing countries). The
major disadvantage of using the correlation matrix instead of the covariance
matrix is that the PCA coefficients, the elements of a1, are more difficult to use
for statistical inference, however, my analysis does not rely on the distribution
of the PCA coefficients. As mentioned by Joliffe (1986), PCA is not appropriate
for analyzing strongly co-trending data. However, this may not be a problem
in this paper since McKitrick et al., (in press) showed that global per capita
CO2 emissions are stationary with no trend, suggesting that the emissions of
all countries cannot be co-trending. Out of the 121 country sample studied by
McKitrick et al., (in press), only the emissions of 45 countries followed trends
with positive heterogeneous trend coefficients. Also, only the emissions of 3
countries studied did not have heterogeneous structural breaks. The results of
McKitick et al., (in press) suggest that we can assume that co-trending is not
pervasive in the data and that PCA is applicable. If this assumption is incorrect,
then PC1 may be a common trend rather than a common fluctuation pattern.

PC1 (z1) is the factor that represents the optimal linear summary of the co-
fluctuation of per capita emissions across the K countries. In this sense, PC1 is
often referred to as the dominant common factor. The signs of the elements of
a1, the PCA coefficients or factor loadings, indicate which countries emissions
are co-moving and which countries emissions are off-setting. Figure 1 provides
an example of co-fluctuation: The hypothetical data in this example consist
of five time series that differ in levels, but follow the same fluctuations. The
common fluctuation was drawn from a normal distribution with zero mean and
standard deviation of 0.29. Three of the series were generated with the common
fluctuation series added to their levels (perfect co-movement). The other two
series have the common fluctuation series subtracted from their levels, to mimic
offsetting. PCA conducted on this data set produces a PC1 that explains 100%
of the variation between the series. The signs of the PCA coefficients for the
three series that experience co-movement are positive, and the signs of the PCA
coefficients for the two series that are co-moving in the opposite direction are
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negative. Therefore, the proportion of total variation explained by PC1 is a
measure of the degree to which the columns of the data matrix are co-moving
in absolute value over the time period.

Figure 2 provides an example of series that move independently of each
other. The series were all generated using different random fluctuation series
drawn from a normal distribution with zero mean and standard deviation of
0.29, hence each series follows a different random fluctuation pattern. PCA in
this case produces a PC1 that explains only 32.7% of the variation between
series. The results from the two examples suggest that the proportion of total
variation explained by PC1 can be thought of as an index of the homogeneity
of emission fluctuations across countries. Throughout this paper, the index of
homogeneity of emissions will be denoted by λ(X), where X is the data matrix
in question (see equation (12)).

It is important to point out that PCA cannot measure the convergence of
emissions, just the coherence of emission fluctuations across countries. This is
because the data are centered when applying PCA, i.e., levels no longer matter.
Figure 3 provides an example of sigma convergence, a reduction in dispersion
between series overtime, with a low level of homogeneity of fluctuations, λ =
35%. Each series in Figure 3 was generated, as in Figure 2, with a different
set of random fluctuations. To create sigma convergence, the outer series were
constructed to trend toward the middle series. Figure 4 provides an example of
sigma convergence with a high level of homogeneity of fluctuations, λ = 80%.
The series in Figure 4 were generated, as in Figure 1, following the same set
of random fluctuations. Once again, the outer series were constructed to trend
toward the middle series. The purpose of this paper is to focus on whether
emission co-fluctuation between countries is driven by a common factor (e.g.,
energy prices), not whether emissions are converging; and it is in this focus on
co-fluctuations that PCA is deemed appropriate.

We first calculate λ(C) for per capita emissions for a global sample of 132
countries over intervals of 17 years (1950-1966, 1967-1983, 1984-2000). Figure
5 shows scree-plots of the proportion of variance explained by each principal
component of the PCA conducted on the global sample. The height of the
first column represents λ(C). The numerical values of λ(C) are shown in Table
2. λ(C) follows a u-shape over time for the global sample. Homogeneity is
highest in the early time period, and lowest in the middle time period. λ(C) is
relatively high (> 0.5) for all three time periods suggesting that globally, per
capita emissions are strongly linked across countries.

PCA is also applied on a sample of developed countries (the 28 OECD coun-
tries as of the year 2000) and a sample of developing countries (the 104 non-
OECD countries as of the year 2000). Figures 6 and 7 show scree-plots of the
proportion of variance explained by each principal component of the PCA con-
ducted on the emissions of the developed countries and the emissions of the
developing countries respectively. The values of λ(C) are displayed in Table 2.
λ(C) for the developed countries decreases from 0.844 to 0.691 over the three
time periods. λ(C) for the developing countries increases from 0.619 to 0.689
over the three time periods. Considering the global sample results in association
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with the developed and developing results, the pattern of emission fluctuation
differs between developed and developing countries in the first two time peri-
ods. For the 1984-2000 time period, λ(C) is equal between the developed and
developing countries (0.69 after rounding). The difference between this value
and the global value is small, 0.02, suggesting coherence of emission fluctuation
patterns between developed and developing countries in the later time period.
This result is in contrast to the results of the convergence studies discussed in
section 2. Our results show the emissions of developed and developing countries
acting similarly in recent history, whereas, the convergence studies generally
have them acting differently (i.e., conditional emissions convergence amongst
developed countries, but not amongst developing countries). The emissions of
developed and developing countries following the same pattern of fluctuation
and being strongly linked is a result in support of global per capita emissions
remaining stationary around a stable mean into the future. This result sup-
ports the predictions of McKitrick et al., (in press), and makes convergence in
per capita emissions less relevant (i.e., convergence is not as important if there
is a global offsetting mechanism).

The methodology now turns to investigating the coordinating role of energy
prices (i.e., trying to identify international energy markets as the offsetting
mechanism). Each country’s emissions, cji,t, are regressed on world prices of
coal (cpt), natural gas (ngpt), and oil (opt)

cji,t = β0 + β1cpt + β2ngpt + β3opt + uji,t, i = 1, . . .K, t = 1, . . . , T, (13)

where j refers to the interval: early (1950-1966), middle (1967-1983), or late
(1984-2000). The residuals from these regressions represent the portion of per
capita emissions in each country not explained by prices. The residuals are
assembled into a TxK matrix, U j

U j =


uj1,1 · · · · · · uj1,K

...
. . .

...
...

. . .
...

ujK,1 · · · · · · ujK,K

 .

PCA is then undertaken on U j and PC1 is obtained,5 i.e., the index of homo-
geneity, λ(U j), once the effect of prices is removed. If energy prices have an
effect on emissions then it is expected that energy prices are contributing to

5The Kwiatkowski, et al. (1992) test suggests the residuals of each individual regression
are stationary. However, the Elliot, et al. (1996) test suggests that some of the residuals may
have a unit root; although, unit root tests suffer from low power in small samples (Cochrane
(1991)). We do not expect this to be an issue for the PCA method since PCA is regularly
applied to nonstationary data to correct for cross-sectional dependence when testing for unit
roots in panel data, e.g., Bai and Ng (2004), Moon and Perron (2004), etc.
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one of the principal components and λ(U j) 6= λ(Cj). If energy prices are con-
tributing to the dominant common factor (PC1) suggesting that energy markets
have a coordinating effect on emissions, then it is expected that λ(U j) < λ(Cj).
If energy prices are not contributing to PC1, but are contributing to lower
principal components, then it is expected that λ(U j) > λ(Cj) because λ(Cj)
and λ(U j) are calculated using the cumulative percentage of total variance as
the denominator (see equation (12)). Energy prices influencing lower principal
components suggests that energy prices are not having a coordinating effect on
emissions over the whole sample. Table 2 reports the difference and the percent
change between λ(Cj) and λ(U j)

∆Hj = λ(U j)− λ(Cj), (14)

%∆Hj =
λ(U j)− λ(Cj)

λ(Cj)
. (15)

To assess the significance of the changes, it is necessary to estimate confidence
intervals for ∆Hj and %∆Hj through bootstrap simulations6. The bootstrap
simulations consist of generating multiple bootstrap samples from the emissions
matrix, holding the cross-sectional dimension constant to preserve the correla-
tion structure between countries, and then calculating ∆H∗j and %∆H∗j from
the bootstrap samples7. This process is repeated 999 times for each interval, for
each sample of countries. Critical values8 are calculated for ∆Hj and %∆Hj .

If ∆Hj and %∆Hj are negative and significant, then the portion of emission
data unexplained by prices exhibits less coherence than the original emissions
data, suggesting energy resource prices are contributing to the dominant com-
mon factor (PC1). If ∆Hj and %∆Hj are positive and significant, then the
portion of emission data unexplained by prices exhibits more coherence than the
original emissions data, suggesting energy prices do not influence the dominant
common factor (PC1). However, it also suggests that the dominant common
factor now explains a larger percentage of the variance, suggesting that energy
prices influence a lower order common factor (e.g., PC2, PC3, etc.). In this
situation, energy resource prices are not having an overall coordinating effect
on the emissions of countries in the sample. Prices may still be having a coor-
dinating effect on the emissions of a sub set of countries in the sample, but this
minor coordinating effect has a negative effect on the emission linkages of all
countries in the sample.

The ∆Hj and %∆Hj values for the global, developed, and developing sam-
ples are displayed in Table 2. For the global sample, the values of ∆Hj and

6Further description and explanation of the bootstrap simulations is presented in Appendix
C.

7This bootstrap approach is applicable under the assumption that emissions are indepen-
dent and identically distributed in the time-series dimension. If this assumption is violated,
then application of the Block bootstrap (see MacKinnon (2002)) would result in more appro-
priate confidence intervals.

8Appendix C, Tables C.8, C.9, C.10, C.11 and C.12.
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%∆Hj are large, negative, and statistically significant at the 1% level for the
early and late time periods. Therefore, there is evidence to suggest that en-
ergy resource prices were contributing to the dominant common factor in the
early and late time periods and that energy resource markets were acting as
a coordinating mechanism for emissions between countries at the global level.
In the middle period, the global results have positive values and are statisti-
cally significant at the 10% level. This result suggests that between 1967 and
1983 something other than energy prices was influencing the dominant com-
mon factor, and that energy prices were affecting a lower principal component.
This result suggests that in this time period, energy prices were not globally
coordinating emissions between countries.

For the developed countries, the values of ∆Hj and %∆Hj are negative and
significant in all three time periods. Therefore, the developed country results
are as expected: energy prices have been a key mechanism coordinating emission
fluctuations across developed countries.

The values of ∆Hj and %∆Hj for the developing countries are negative
and significant at the 1% level for the late period. The values of ∆Hj and
%∆Hj are not statistically significant in the early and middle time periods,
suggesting that energy prices did not coordinate emissions in these time period.
This could possibly be due to developing countries pursuing policies to shield
their economies from world energy resource prices during these periods.

The result that the emissions of both the developed countries and develop-
ing countries are mainly coordinated in the 1984-2000 period by energy markets
lends support to the global emissions predictions of McKitrick et al., (in press).
Also, the strong degree of emissions co-fluctuation combined with energy re-
source markets as an offsetting mechanism suggests that any global agreement to
address climate change requires emissions reduction efforts by all major emitters
to be successful. For example, if an agreement only requires emissions reduc-
tions by developed countries, as the Kyoto Protocol did, then these reductions
and the associated reduced use of energy resources in developed countries will
result in increased energy use and corresponding increased emissions in devel-
oping countries.However, the absence of energy markets playing a coordinating
role on the emissions of developing countries in the early and the middle time
periods suggests that other factors need to be considered.

3.2. Regional Analysis

To obtain more insight into the coordinating role of energy prices, countries
were further divided into 7 regional groups: North America, Europe (excluding
former communist countries), former communist European countries, Africa,
Middle-East, Central & South America, and Asia & Oceania (subscripts are,
respectively, na, we, ee, af, me, sa, ao).

The numerical results for the regional groups are listed in Table 3. The index
of homogeneity of emission fluctuations for North America (λ(Cna)) follows a
u-shape over time; λ(Cna) experiences a large decrease in the 1967-1983 period,
but returns to the 1950-1966 level in the 1984-2000 period. The Asia & Oceania
region is also characterized by a u-shape in λ(Cao) over time. The homogeneity
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of emission fluctuations for Western Europe (λ(Cwe)) is decreasing over all time
periods. The homogeneity of emission fluctuations for Africa (λ(Caf )), the
Middle-East (λ(Cme)), and Central & South America (λ(Csa)) follow inverse u-
shapes over time. The former Eastern Bloc countries have extremely high levels
of homogeneity of emission fluctuations (λ(Cee)) over all three time periods.

Looking at the %∆H column in Table 3, North America and Central & South
America appear to have similar patterns. These two regions are characterized
by large, negative, and statistically significant values of %∆H in 1950-1966,
followed by positive and statistically significant values of %∆H in 1967-1983,
followed by negative and statistically significant values of %∆H in 1984-2000.
This suggests that prices were having an impact on emission co-fluctuation in
the first and last time periods, but not in the middle time period. In the middle
period, energy prices are having a detrimental effect on the overall level of
emission linkages in these regions. This could be due to a large percentage of
countries implementing domestic policies in response to the OPEC oil shocks
(e.g., the National Energy Program in Canada that consisted of price ceilings
on petroleum and partial nationalization of the Canadian petroleum industry).
Considering the results from the previous section, it is surprising that these two
regions have similar %∆H patterns as a developed region. This could be due
to the fact that these are neighbouring regions.

Values of %∆H for Western Europe are large, negative, and statistically
significant at the 1% level for all three time periods. The former Eastern Bloc
countries also experience negative, statistically significant values of %∆H in all
time periods. Again, a developing region follows the same %∆H pattern as
a developed region in close proximity. Also, it is very interesting that world
prices had an effect on these planned economies. This could possibly be due to
the commencement of oil sales on the world market by the USSR in the 1970s,
rather than trading oil in greater quantities to the Eastern Bloc countries (Stent
(1982), Gustafson (1989)).

For the Middle-East, %∆H is negative and statistically significant in the
middle and late periods, suggesting prices were having a positive influence on
emission co-fluctuation in these periods. %∆H is positive and significant in the
early period, suggesting that energy prices were not always a coordinating effect
on emissions in this region. For Africa, energy prices are having a coordinating
effect on emissions in the early and late periods. However, ∆H and %∆H are
not statistically significant for the middle time period, suggesting that energy
prices were not influencing a common factor at all. This could be the result
of governments enacting policies aimed at protecting their economies from the
OPEC oil shocks. The results for Asia and Oceania suggest that energy prices
were influencing a common factor, but not influencing the dominant common
factor in the first two time periods. However, the Asia and Oceania results also
suggest that energy prices were affecting the dominant common factor in the
1984-2000 time period.

The results from the multiple applications of principal component analysis
are consistent with the view that world energy prices have increased the homo-
geneity of emission fluctuations across most countries for the early and late time
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periods. However, for Africa in the second time period, prices are not having a
coordinating effect on emissions. For many regions, energy prices are not always
having a coordinating effect on emissions, especially in the middle time period.
The absence of price effects as the strongest coordinating mechanism could be
attributed to countries (developed and developing) following policies that shield
their markets from world energy prices. The results for the 1984-2000 time pe-
riod show energy prices having a significant coordinating effect in all regional
groups. If domestic price shielding policies were responsible for the absence
of price effects, then such policies must have been weakened or discontinued in
most countries. The next section will expand the analysis in an effort to identify
other factors that may contribute to the homogeneity of emission fluctuations.

3.3. Expanded Analysis to Consider Trade and Government Intervention

The analysis in this section will be similar to that in the preceding sections,
but will investigate two additional factors that may contribute to homogene-
ity of emission fluctuations across countries. It is conceivable that freer trade
could provide the impetus behind emission co-fluctuations between countries.
Antweiler, Copeland, and Taylor (2001) decompose the relationship between
freer trade and emissions into three effects: scale (change in emissions due to
trade induced changes in the amount of output), technique (change in emissions
due to trade induced changes in production methods), and composition (change
in emissions due to trade induced changes in the composition of output). If
two countries have increased trade with each other, the cumulative effect on
emissions could conceivably be increased emissions in both countries, decreased
emissions in both countries, or increased emissions in one country and decreased
emissions in the other. In this sense, the emissions of the two countries are linked
through trade. Countries that are highly open to international trade would be
expected to have emissions that are more linked, than countries that have low
levels of openness to trade. Therefore, it is expected that emissions amongst
countries with high levels of openness to trade would follow relatively similar
fluctuation patterns.

The results in the previous section suggest that for particular groups of
countries in some time periods energy resource prices were not acting as the
main coordinating mechanism for emission fluctuations. This could possibly be
due to policy responses intended to protect domestic economies from the oil
world price. This section investigates the effect of government intervention on
the homogeneity of emission fluctuations. Government share of national income
is used as a proxy for the level of government intervention in the economy.
Therefore, making the assumption that price shielding policies are most likely
implemented in countries with high levels of government intervention in their
economies.

The analysis in this section is similar to that in the previous section. Trade
intensity is used as a measure of openness to trade. The data for government
size (government share of Gross Domestic Product (GDP)) and trade intensity
were obtained from the Penn World Tables version 6.1 (Heston, Summers and
Aten, 2002). Trade intensity is measured as exports plus imports divided by real
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GDP. Government size is measured as government final consumption expendi-
ture divided by GDP. Government final consumption expenditure includes all
expenditure by general government on individual consumption goods and ser-
vices (e.g., in-kind transfers: schools, health care), and collective consumption
goods and services (e.g., national defence). The indicators are measured in 1996
international dollars to correct for purchasing power parity. Data for these vari-
ables were only available for 25 of the 28 developed countries examined in the
previous section for the entire period 1950-2000. Developing countries will only
be looked at over the 1984-2000 period due to data limitations. The developing
country sample for this section consists of 65 of the 104 developing countries
examined in the previous section.

Focusing first on the sample of 25 developed countries, Table 4 displays
the results of the expanded analysis. The first row of Table 4 displays the
homogeneity of emission fluctuations between countries (λ(C)) for all three time
periods. The homogeneity of emission fluctuations decreases in each time period.
The per capita emissions for each developed country were then regressed on oil,
coal, and natural gas prices (as in equation (13)). PCA was then conducted
on the matrix of residuals for each time period; obtaining the homogeneity of
fluctuations for the residuals (λ(U)) displayed in the second row of Table 4. The
third row of Table 4 displays the homogeneity of fluctuations for PCA conducted
on the matrix of residuals (λ(V )) from per capita emissions regressed on trade
intensity (TIi,t)

ci,t = a0 + a1TIi,t + vi,t for i = 1, 2, . . . , 25 (16)

The fourth row of Table 4 displays the index of homogeneity from PCA
conducted on the matrix of residuals (λ(Φ)) from per capita emissions regressed
on government size (gi,t)

ci,t = δ0 + δ1gi,t + φi,t (17)

The %∆H in Table 4 is calculated the same way as in equation (15). Looking
at the 1950-1966 time period, trade intensity provides the largest negative value
of %∆H, however, this large value was not found to be statistically significant.
Government size also produces a negative but not statistically significant value
for %∆H. In the 1967-1983 time period, the %∆H for trade intensity is positive
and not significant. In the final time period, the %∆H for trade intensity
is negative but not significant again. The %∆H for government size is not
significant in any of the time periods, despite being large and negative in the
1967-1983 period. All %∆H values for energy prices are statistically significant
at the 1% level in all three time periods. This is the same result found for the
sample of 28 developed countries studied in Section 3.1. Considering the results
of the expanded analysis, energy resource prices appear to be the dominant
common factor, and trade intensity and government size do not appear to be
common factors at all.

It was found in Section 3.1 that in the latest period the emissions of the
developing countries follow the same co-fluctuation pattern as the emissions of
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the developed countries. It is now useful to examine the common co-fluctuation
pattern in greater depth. Table 5 displays the results from an expanded analysis
done on the sample of 65 developing countries for the time period 1984-2000.
Government size produces the largest negative value for %∆H, however, the
value is not statistically significant. Openness to trade also produces a large,
negative value of %∆H, but this value is also not significant. Energy prices
produce a large, negative value for %∆H that is statistically significant at the
1% level. These results suggest that for the 1984-2000 time period, energy prices
were affecting the dominant common factor and the other two variables were not
having a common effect. The results of this section support the results found
in Section 3.1, however, due to the data limitations for developing countries it
is still unclear what was coordinating the emissions of developing countries in
the first two time periods.

4. Conclusions

This paper applied principal component analysis to investigate linkages, in
the form of co-fluctuation patterns, of per capita carbon dioxide emissions across
countries. The analysis focused on identifying common factors that coordinate
the emission fluctuations between countries. The results presented in Section
3.1 indicate a difference in co-fluctuation patterns of emissions between devel-
oped and developing countries over the first two time periods, but a common
fluctuation pattern in the most recent time period. A possible explanation of
this result is that, according to DeVany and Walls (1996), Gulen (1999), and
Kleit(2001), among others, regional energy markets became more closely linked
throughout the 1980s and 1990s. The common co-fluctuation pattern in the late
period is inconsistent with the conclusions found in many of the convergence
studies discussed in Section 2 (i.e., the emissions of developing countries behave
differently than those of developed countries in relation to convergence). This
result may be due, in part, to the convergence studies needing to use the whole
time series rather than splitting it into three time periods. If the PCA analysis
is conducted on the whole time series, the emissions of developing countries do
indeed appear to behave differently than those of developing countries.

Energy prices have coordinated the emissions of developed countries in all
periods, however, prices only coordinate the emissions of developing countries
globally in the most recent time period. The results of this paper support the
findings of McKitrick et al., (in press), since evidence of an emissions offset-
ting mechanism was found. Furthermore, the strong degree of emissions co-
fluctuation combined with energy resource markets as an offsetting mechanism
suggests that any global agreement to address climate change requires emis-
sions reduction efforts by all major emitters to be successful. For example, if
an agreement only requires emissions reductions by developed countries, as the
Kyoto Protocol did, then these reductions and the associated reduced use of
energy resources in developed countries will result in increased energy use and
corresponding increased emissions in developing countries.
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The results of Section 3.2 suggest that regional common fluctuation patterns
are driven by energy prices in most cases (all regions except for Africa in 1967-
1983); however, energy prices were found to not always be the dominant common
factor. The regional results suggest that another unidentified factor also plays a
coordinating role. The regional results also suggest that although the emissions
of developing countries were not globally coordinated by energy prices in the
first two time periods, they were, for the most part, regionally coordinated by
energy prices. The results from the expanded analysis in Section 3.3 indicate
that openness to trade and the level of government intervention do not play a
coordinating role on emissions in any time period for developed countries. And
these are not contributing coordinating factors for developing countries in the
1984-2000 time period.

An extension to this research would be to compare the emission fluctuation
patterns of China and India with those of the developed countries. This could
be done with a similar methodology as the one applied in this paper. Such a
study could potentially provide insight on whether future increases of per capita
emissions from India and China would be offset by reduced per capita emissions
in the developed countries. Another extension would be to apply non-linear
principal component analysis in order to consider further moments of the data.
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Table 1: Per capita CO2 emissions descrip-
tive statistics

Statistic OECD non-OECD

Countries 28 104
Mean 2.527 1.006

Median 2.335 0.585
StDev 1.134 1.351
Max 5.4 7.7
Min 0.93 0.01

Notes: The statistics are calculated for
the year 2000.

Table 2: Homogeneity of emissions fluctuations; Global, developed, and developing

Sample Period Emissions, λ(C) Residuals, λ(U) ∆H %∆H

Global 1950-1966 0.693 0.499 -0.193a -27.94%a

1967-1983 0.579 0.674 0.095c 16.29%c

1984-2000 0.667 0.376 -0.291a -43.64%a

Developed 1950-1966 0.844 0.534 -0.310a -36.73%a

1967-1983 0.750 0.668 -0.082c -10.93%c

1984-2000 0.691 0.492 -0.199a -28.80%a

Developing 1950-1966 0.619 0.559 -0.060 -9.69%
1967-1983 0.638 0.705 0.067 10.50%
1984-2000 0.689 0.463 -0.291a -32.80%a

Notes: λ(C) is the proportion of variation explained by the first principal component (PC1) from the
emissions matrix, C. λ(U) is the proportion of variation explained by the PC1 from the matrix of
residuals from the price regressions (see equation (13)). ∆H is the difference between λ(U) and λ(C)
(see equation (14)). %∆H is the percent change between λ(C)and λ(U) (see equation (15)). The
superscripts a, b, c denote significance at the 1%, 5%, and 10% levels respectively. The associated
critical values can be found in Table C.8 located in Appendix C.
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Table 3: Homogeneity of emissions fluctuations; Regional groupings

Emissions, Residuals,
Sample Period λ(C) λ(U) ∆H %∆H

North 1950-1966 0.753 0.453 -0.300a -39.84%a

America 1967-1983 0.426 0.623 0.197a 46.24%a

1984-2000 0.740 0.674 -0.066c -8.92%c

Western 1950-1966 0.835 0.554 -0.281a -33.65%a

Europe 1967-1983 0.787 0.646 -0.141b -17.92%a

1984-2000 0.624 0.484 -0.140b -22.44%a

Eastern 1950-1966 0.971 0.875 -0.096a -9.89%a

Europe 1967-1983 0.935 0.678 -0.257a -27.49%a

1984-2000 0.951 0.772 -0.179a -18.82%a

1950-1966 0.809 0.459 -0.350a -43.30%a

Africa 1967-1983 0.919 0.934 0.015 1.63%
1984-2000 0.637 0.509 -0.128b -20.09%b

1950-1966 0.809 0.892 0.083a 10.26%b

Middle-east 1967-1983 0.972 0.910 -0.062a -6.38%a

1984-2000 0.811 0.660 -0.151a -18.62%a

Central 1950-1966 0.793 0.457 -0.336a -42.37%a

& South 1967-1983 0.871 0.934 0.063b 7.23%b

America 1984-2000 0.589 0.498 -0.091b -15.45%c

Asia & 1950-1966 0.810 0.955 0.145a 17.90%a

Oceania 1967-1983 0.673 0.854 0.181a 26.89%a

1984-2000 0.920 0.846 -0.074a -8.04%a

Notes: See notes for Table 2. The superscripts a, b, and c denote significance at the
1%, 5%, and 10% levels respectively. The associated critical values can be found in
Tables C.9 and C.10 located in Appendix C.
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Table 4: Expanded analysis: Developed countries

25 OECD Countries 1950-1966 1967-1983 1984-2000

Emissions, λ(C) 0.826 0.765 0.679

Price Residuals, λ(U) 0.534 0.668 0.499
%∆H for U -35.35%a -12.68%a -26.51%a

Trade Residuals, λ(V ) 0.420 0.83 0.575
%∆H for V -49.15% 8.50 -15.32%

Gov’t Size Residuals, λ(Φ) 0.716 0.448 0.683
%∆H for Φ -13.32% -41.44% 0.59%

Notes: Sample of 25 OECD countries. Row 1 displays the homogeneity of
emission fluctuations. Row 2 displays the homogeneity of fluctuation for the
matrix of residuals from the price regressions (see equation (13)). Row 3
displays the homogeneity of fluctuation for the matrix of residuals from the
trade intensity regressions (see equation (16)). Row 4 displays the homo-
geneity of fluctuation for the matrix of residuals from the government size
regressions (see equation (17)). %∆H is the percent change between λ(C)
and the λ(·) for whichever matrix of residuals is in question. The superscript
a denotes significance at the 1% level. The associated critical values can be
found in Table C.11 located in Appendix C.

Table 5: Expanded analysis: Developing coun-
tries

65 non-OECD countries 1984-2000

Emissions, λ(C) 0.733
Price residuals, λ(U) 0.446

%∆H for U -39.15%a

Trade residuals, λ(V ) 0.473
%∆H for V -35.47%

Gov’t size residuals, λ(Φ) 0.425
%∆H for Φ -42.02%

Notes: Sample of 65 developing countries.
For Table explanation, see notes for Table 4.
The superscript a denotes significance at the
1% level. The associated critical values can
be found in Table C.12 located in Appendix
C.
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Figure 1: PCA Example 1
Notes: Three series have perfect co-movement, while the other two series move opposite.
The five series are perfectly co-fluctuating. Principal component analysis conducted on the 5
series produces a first principal component that explains 100% of the variation in the data.
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Figure 2: PCA Example 2
Notes: The fluctuations for the five series are randomly drawn from a normal distribution
with zero mean and standard deviation of 0.29. PCA conducted on the five series produces a
PC1 that explains 32.7% of the variation in the data.
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Figure 3: PCA Example 3
Notes: The data is characterized by sigma convergence and random fluctuations. However,
PCA on the data produces a PC1 that explains only 35% of the variation in the data.
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Figure 4: PCA Example 4
Notes: The data is characterized by sigma convergence and co-fluctuation. PCA on the data
produces a PC1 that explains 80.1% of the variation in the data.
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Figure 5: Global sample scree plots
Notes: The graphs on the left are the ‘scree’ plots from PCA conducted on the emissions for
the global sample of 132 countries. The graphs on the right are the ‘scree’ plots from PCA
conducted on the matrix of residuals from the price regressions (see equation (13)). Each
bar represents the proportion of variation attributed to a particular principal component.
The bars are listed in decreasing order of importance (the left most bar for each graph is
attributed to the first principal component). Looking at the scree plots on the left (right),
the height of the largest bar of each plot is λ(C) (λ(U)).
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Figure 6: Developed sample scree plots
Notes: The graphs are the scree plots for the PCA conducted on the data for the 28
developed countries. For further explanation see the notes for Figure 5.
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Figure 7: Developing sample scree plot
Notes: The graphs are the scree plots for the PCA conducted on the data for the 104
developing countries. For further explanation see the notes for Figure 5.
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Appendix A. Data Information

This study uses annual data of per capita carbon dioxide emissions, energy
resources, and macroeconomic variables from 1950 to 2000. Each variable is
discussed in this appendix. The chosen time interval was selected as a solution
to the trade-off between the number of countries in the cross-section and the
number of years of emission data (i.e. more countries could be included if the
data was taken from 1960).

Appendix A.1. Carbon dioxide emissions data

The emissions data were obtained from the Carbon Dioxide Information and
Analysis Center (CDIAC, Marland et al. (2003)), at the Oak Ridge National
Laboratory in Oak Ridge, Tennessee. The emissions data are measured in metric
tonnes of carbon per capita. It includes the CO2 emissions produced from
fossil fuel burning, gas flaring, and cement manufacture. It does not include
the emissions from bunker fuels used in transport. The data originally were
available for 140 countries, however, the emissions of the USSR were removed.
The emissions of seven countries that exhibited any observations greater than 15
tonnes of carbon per capita (Brunei, Falkland Islands, Kuwait, Qatar, US Virgin
Islands, United Arab Emirates, Wake Island) were removed. After removing the
USSR and the outlier countries, the emission sample contains 132 countries (28
OECD, 104 non-OECD).

Appendix A.2. Energy resource price data

Price data for crude oil, natural gas, and coal were obtained from the Annual
Energy Review 2006 produced by the Energy Information Administration (EIA)
of the United States government. The prices for crude oil are the average annual
crude oil domestic first purchase prices for the United States (nominal USD per
barrel). The natural gas prices are the average annual US natural gas wellhead
prices (nominal USD per thousand cubic feet). The coal prices are the average
annual US free-on-board prices of coal at the point of first sale (nominal USD
per short ton). The nominal prices were converted into real prices (constant
year 2000 USD) using Consumer Price Index (CPI) data from the Bureau of
Labor Statistics, US Department of Labor (Series ID: CUUR0000A0, URL:
http://data.bls.gov/cgi-bin/srgate).

The results of the Kwiatkowski, et al. (1992) test suggest that all three
energy price series are stationary at the 5% significance level. The results are
listed in Table A.6. Furthermore, the results of the Elliot, et al. (1996) test,
displayed in Table A.7, suggest that none of the three series have a unit root.
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Table A.6: KPSS Stationarity Test on Energy Prices

Model
Variable Period Short (3 lags) Long (10 lags)

Oil 1950-2000 0.2801 0.1682
Coal 1950-2000 0.2138 0.1144
Gas 1950-2000 0.8711a 0.4138c

Notes: The null hypothesis is that the series in question is sta-
tionary. The superscripts a, b, c denote significance at the 1%,
5%, and 10% levels respectively.

Table A.7: ERS Unit Root Test on Energy Prices

P-Test DF-GLS
Variable Period Constant Trend Constant Trend

Oil 1950-2000 1.1993a 3.7016a -2.0435b -2.3031
Coal 1950-2000 0.5323a 1.5857a -2.235b -2.3032
Gas 1950-2000 2.4107b 2.0908a -0.8191 -3.1473b

Notes: The null hypothesis is that the series in question has a unit root. The
superscripts a, b, c denote significance at the 1%, 5%, and 10% levels respectively.

Appendix A.3. Macroeconomic data

Data for government size and trade intensity were obtained from the Penn
World Tables version 6.1. Government size is measured as government final
consumption expenditure divided by real gross domestic product (GDP). Gov-
ernment final consumption expenditure includes all expenditure by general gov-
ernment on individual consumption goods and services (e.g. in-kind transfers:
schools, health care), and collective consumption goods and services (e.g. na-
tional defence). Trade intensity is measured as exports plus imports divided by
real GDP. Both trade intensity and government size are measured in constant
1996 international dollars to correct for purchasing power parity. Data for these
indicators were only available for 25 OECD countries for the period 1950-2000,
and 65 non-OECD countries for the period 1984-2000.

Appendix B. List of Countries

Appendix B.1. Developed Sample:

Australia, Austria, Belgium, Canada, Denmark, Finland, France (includ-
ing Monaco), Germany, Greece, Hungary, Iceland, Ireland, Italy (including
San Marino), Japan, Luxembourg, Mexico, Netherlands, New Zealand, Nor-
way, Poland, Portugal, Republic of Korea, Spain, Sweden, Switzerland, Turkey,
United Kingdom, United States of America.
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Appendix B.2. Developing Sample:

Afghanistan, Albania, Algeria, Angola, Argentina, Bahamas, Bahrain, Bar-
bados, Belize, Bermuda, Bolivia, Brazil, Bulgaria, Cape Verde, Cayman Is-
lands, Chile, China, Colombia, Costa Rica, Cuba, Cyprus, Democratic Peo-
ple’s Republic of Korea, Democratic Republic of the Congo, Djibouti, Do-
minica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea,
Faeroe Islands, Fiji, French Guiana, Gambia, Ghana, Gibraltar, Greenland,
Grenada, Guadeloupe, Guam, Guatemala, Guinea Bissau, Guyana, Haiti, Hon-
duras, Hong Kong, India, Indonesia, Iraq, Islamic Republic of Iran, Israel, Ja-
maica, Jordan, Kenya, Lebanon, Liberia, Libyan Arab Jamahiriyah, Macau,
Madagascar, Malta, Martinique, Mauritius, Mongolia, Morocco, Mozambique,
Myanmar, Nepal, New Caledonia, Nicaragua, Nigeria, Panama, Papua New
Guinea, Paraguay, Peru, Philippines, Puerto Rico, Republic of Cameroon, Re-
union, Romania, Saint Helena, Saint Lucia, Samoa, Sao Tome & Principe, Saudi
Arabia, Seychelles, Sierra Leone, Solomon Islands, South Africa, Sri Lanka, St.
Pierre & Miquelon, St. Vincent & The Grenadines, Sudan, Suriname, Syrian
Arab Republic, Taiwan, Thailand, Togo, Tonga, Trinidad & Tobago, Tunisia,
Uganda, Uruguay, Vanuatu, Venezuela.

Appendix C. Bootstrap Simulations

To increase the definitiveness of the analysis, it is necessary to test the null
hypothesis that energy resource prices are not a common factor (i.e.H0: ∆H = 0
and %∆H = 0) against the alternative hypotheses that prices are the dominant
factor (i.e. H1: ∆H < 0 and %∆H < 0) and prices are not the dominant
factor, but are a common factor (i.e. H2: ∆H > 0 and %∆H > 0). The
null hypothesis can be tested by using the bootstrap (Efron (1979)) to obtain
the empirical distribution of ∆H and %∆H. Each bootstrap sample C∗j is
obtained by resampling the centered emissions matrix with replacement. To
maintain the correlation structure accross countries, the emissions matrix is
resampled holding the cross-sectional dimension constant.

PCA is then undertaken on C∗j to obtain λ(C∗j). Then C∗j is regressed on
resource prices to obtain the matrix of residuals, U∗j . PCA is then undertaken
on U∗j to obtain λ(U∗j). Values of ∆H∗ and %∆H∗ are then calculated. The
process is repeated B = 999 times to produce 999 bootstrap estimates of ∆H∗

and %∆H∗.
Critical values for the null hypothesis can then be calculated as the 0.05%,

2.5%, and 5% quantiles of the simulated estimates considering H1 and as the
99.5%, 97.5%, and 95% quantiles of the simulated estimates considering H2.
The simulation process is repeated for every group of countries and every time
period. Table C.8 contains the critical values for the simulations for the global,
OECD, and non-OECD samples of countries. Tables C.9 and C.10 contain the
critical values for the regional groups of countries. Table C.11 contains the
critical values for the expanded analysis undertaken for the group of 25 OECD
countries. Table C.12 contains the critical values for the expanded analysis
undertaken for the group of 65 developing countries.
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Table C.8: Bootstrap Critical Values; Global, Developed, Developing

Global Sample
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.156 0.085 -0.089 0.07 -0.073 0.06

%∆H -21.53 13.83 -12.85 11.09 -10.17 8.79

1967-1983
∆H -0.14 0.132 -0.084 0.107 -0.07 0.091

%∆H -20.38 23.4 -13.68 18.56 -10.88 15.63

1984-2000
∆H -0.145 0.093 -0.098 0.07 -0.072 0.058

%∆H -21.15 13.9 -14.24 10.52 -10.51 8.66

Developed Country Sample
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.119 0.058 -0.072 0.043 -0.051 0.038

%∆H -13.64 6.87 -8.47 5.07 -6.04 4.48

1967-1983
∆H -0.135 0.134 -0.097 0.077 -0.071 0.06

%∆H -18.13 18.81 -13.26 11.06 -9.79 8.17

1984-2000
∆H -0.137 0.101 -0.088 0.08 -0.065 0.068

%∆H -18.89 16.24 -12.87 12.01 -9.52 9.91

Developing Country Sample
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.121 0.121 -0.085 0.088 -0.066 0.073

%∆H -21.5 24.34 -14 16.21 -10.37 12.33

1967-1983
∆H -0.126 0.128 -0.088 0.095 -0.073 0.084

%∆H -18.1 21.91 -13.71 15.37 -10.94 13.03

1984-2000
∆H -0.151 0.09 -0.097 0.066 -0.071 0.056

%∆H -21.61 13.12 -14.02 9.72 -9.91 8.18

33



Table C.9: Bootstrap Critical Values; Regional

North America
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.15 0.089 -0.095 0.064 -0.068 0.057

%∆H -20 12.69 -12.22 8.63 -9.16 7.55

1967-1983
∆H -0.102 0.142 -0.077 0.11 -0.06 0.085

%∆H -18.5 26.85 -14.65 21.03 -10.85 17

1984-2000
∆H -0.127 0.11 -0.088 0.074 -0.064 0.06

%∆H -17.6 16.91 -12.64 10.74 -8.69 8.43

Western Europe
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.122 0.06 -0.072 0.045 -0.055 0.037

%∆H -14.51 7.5 -8.73 5.4 -6.55 4.46

1967-1983
∆H -0.142 0.113 -0.092 0.063 -0.07 0.049

%∆H -17.86 15.19 -11.76 8.54 -8.88 6.62

1984-2000
∆H -0.144 0.107 -0.092 0.084 -0.068 0.072

%∆H -21.6 18.54 -14.23 13.79 -10.4 11.67

Eastern Europe
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.033 0.014 -0.018 0.01 -0.013 0.009

%∆H -3.42 1.43 -1.88 1.09 -1.39 0.92

1967-1983
∆H -0.075 0.033 -0.042 0.025 -0.028 0.02

%∆H -8.2 3.6 -4.7 2.69 -3.05 2.15

1984-2000
∆H -0.044 0.027 -0.027 0.018 -0.02 0.015

%∆H -4.66 2.86 -2.9 1.9 -2.15 1.65

Africa
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.117 0.055 -0.074 0.046 -0.051 0.04

%∆H -14.73 6.81 -8.77 5.61 -6.37 4.98

1967-1983
∆H -0.093 0.06 -0.047 0.037 -0.034 0.03

%∆H -11.38 8.24 -5.39 5 -3.98 3.42

1984-2000
∆H -0.137 0.099 -0.101 0.076 -0.08 0.068

%∆H -20.92 16.73 -15.54 12.08 -12.05 10.51
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Table C.10: Bootstrap Critical Values; Regional Cont’d.

The Middle East
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.134 0.083 -0.093 0.059 -0.066 0.049

%∆H -19.39 12.77 -11.91 7.6 -8.2 6.21

1967-1983
∆H -0.031 0.017 -0.019 0.01 -0.012 0.008

%∆H -3.23 1.76 -1.93 1.07 -1.26 0.81

1984-2000
∆H -0.141 0.073 -0.078 0.058 -0.063 0.046

%∆H -15.99 9.65 -9.85 7.24 -7.58 5.54

Central and South America
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.138 0.078 -0.078 0.059 -0.063 0.047

%∆H -18.64 10.93 -10 7.82 -8.16 6.27

1967-1983
∆H -0.099 0.066 -0.06 0.048 -0.046 0.039

%∆H -11.55 7.63 -6.86 5.51 -5.23 4.47

1984-2000
∆H -0.134 0.104 -0.091 0.08 -0.073 0.071

%∆H -21.69 18.23 -15.78 14.84 -12.15 11.9

Asia and Oceania
α =1% α =5% α =10%

Bounds: Lower Upper Lower Upper Lower Upper

1950-1966
∆H -0.123 0.1 -0.083 0.069 -0.064 0.057

%∆H -15.78 13.23 -10.12 8.99 -7.98 6.96

1967-1983
∆H -0.106 0.151 -0.084 0.111 -0.066 0.093

%∆H -15.71 25.45 -11.5 17.69 -9.45 14.53

1984-2000
∆H -0.059 0.032 -0.041 0.025 -0.028 0.02

%∆H -6.26 3.56 -4.49 2.69 -3.05 2.14

Table C.11: Bootstrap Critical Values; Expanded Analysis, Developed Countries

α =1% α =5% α =10%
Bounds: Lower Upper Lower Upper Lower Upper

1950-1966 -13.64 6.87 -8.47 5.07 -6.04 4.48
%∆H for U 1967-1983 -18.13 18.81 -13.26 11.06 -9.79 8.17

1984-2000 -21.15 13.9 -14.24 10.52 -10.51 8.66

1950-1966 -54.33 -43.3 -53.72 -45.02 -53.22 -45.99
%∆H for V 1967-1983 -8.63 39.21 -6.35 29.82 -4.73 25.43

1984-2000 -33.18 13.02 -30.37 1.48 -28.73 -2.32

1950-1966 -22.17 -3.37 -21.12 -6.29 -20.26 -7.95
%∆H for Φ 1967-1983 -50.66 -24.82 -49.43 -29.89 -48.55 -32.27

1984-2000 -20.56 34.36 -17.23 20.64 -15.27 16.12
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Table C.12: Bootstrap Critical Values; Expanded Analysis, 65 Developing Countries

α =1% α =5% α =10%
Bounds: Lower Upper Lower Upper Lower Upper

%∆H for U 1984-2000 -46.44.57 25.81 -40.44 18.65 -38.46 8.23
%∆H for V 1984-2000 -44.38 -21.3 -43.18 -25.33 -42.68 -27.66
%∆H for Φ 1984-2000 -49.95 -29.19 -48.87 -32.81 -48.42 -34.91
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